Medial regeneration using a biodegradable felt as a scaffold preserves integrity and compliance of a canine dissected aorta.
نویسندگان
چکیده
BACKGROUND Repair of a dissected aorta involves reattaching the media with synthetic glue and/or reinforcement with nonbiodegradable felt. Late complications specific to each aspect of this procedure have been reported. We attempted to regenerate the media by using biodegradable felt. METHODS AND RESULTS We created a canine model of descending thoracic aortic dissection and compared 4 modes of aortic repair: biodegradable polyglycolic acid (PGA) felt in the media; PGA with basic fibroblast growth factor (bFGF) in the media; PGA with bFGF in the media plus external reinforcement with expanded polytetrafluoroethylene; and primary suture closure of the dissected lumen (control). Repaired aortic stumps were quantitatively tested for suture pull-out strength. Failure force improved 4-fold in all 3 medial reinforcement groups compared with controls. Additionally, animals were kept alive for histological examination and compliance testing 6 months after repair. Compliance of the aortic wall at the anastomotic sites was not essentially affected in the long term except in the group with concomitant external reinforcement (55.9 ± 4.5% reduction; P<0.05). In this group, elastic fiber in the media and collagen fiber in the adventitia tended to diminish relative to the other groups. Regarding vessel density in the repaired false lumen, this external reinforced group had a significantly decreased number. Histological derangement was not observed in control or medial reinforcement groups. Basic FGF, applied with PGA in the dissected lumen, failed to yield additional modifications in this model. CONCLUSIONS Medial reinforcement provides sufficient augmented strength for aortic surgical repair. Medial regeneration using biodegradable felt as a scaffold preserves histological integrity and compliance in the canine dissected aorta.
منابع مشابه
Comparison of Autogenic Costal Cartilage with Chitosan Scaffold in Canine Humeral Defect Healing
Objective- Current trends emphasize the acceleration of fracture healing on the ground that in doing so, the limitation of mobility and complications associated with recovery period are reduced. The present study aims to compare autogenic costal cartilage with Chitosan scaffold in canine humeral defect healing. Design- Experimental study Animal-15 adult male dogs Procedures-...
متن کاملNovel biphasic elastomeric scaffold for small-diameter blood vessel tissue engineering.
Compliance mismatch, thrombosis, and long culture times in vitro remain important challenges to the clinical implementation of a tissue-engineered small-diameter blood vessel (SDBV). To address these issues, we are developing an implantable elastomeric and biodegradable biphasic tubular scaffold. The scaffold design uses connected nonporous and porous phases as a basis to mimic, respectively, t...
متن کاملApplication of Electrospun Nanofibrous PHBV Scaffold in Neural Graft and Regeneration: A Mini-Review
Among the synthetic polymers, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microbial polyester is one of the biocompatible and biodegradable copolymers in the nanomedicine scope. PHBV has key points and suitable properties to support cellular adhesion, proliferation and differentiation of nanofibers. Nanofibers are noticeably employed in order to enhance the performance of biomaterials,...
متن کاملDifferentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold
The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...
متن کاملElectrodeposition of Nano Hydroxyapatite Coating on Biodegradable Mg-Zn Scaffold (TECHNICAL NOTE)
Magnesium has been recently recognized as a biodegradation metal for bone substitute application. In the present work, porous magnesium-zinc scaffolds were prepared by powder metallurgical process and nano hydroxyapatite (HAP) coating on the Mg-3Zn (wt.%) scaffold was prepared by pulse electrodeposition and alkali treatment processes to improve the corrosion resistance of scaffold. The results ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 126 11 Suppl 1 شماره
صفحات -
تاریخ انتشار 2012